日韩有码在线视频I 午夜激情电影院I 日韩精品一区二区三区swagI 亚洲私人黄色宅男I 五月开心六月丁香综合色啪I 老头在厨房添下面很舒服I 最新中文字幕视频在线I 国产黄视频白浆18I 视频一区视频二区中文字幕I 女同调教视频I 调教猛男淫吊体育教师I 在线免费观看麻豆avI 57pao国产成永久免费视频I 亚洲欧洲日韩女同I 久久久人人人I 欧美日韩在线精品一区二区三区I 影视先锋中文字幕I 美女主播一区I 视频直播国产精品I 欧美a一欧美I 日韩极品一区I 亚洲一区久久久I 丁香婷婷成人I 国产色产综合产在线视频I 激情a在线免费观看I 成人a级免费电影I 国产网站你懂得I 日日噜噜夜夜狠狠视频欧美人I 日本精品中文字幕I 91丨九色丨蝌蚪富婆spaI 九色自拍视频I 黄色成人av网I 未满十八岁禁止进入


PCB 導線分裂技術在平面EMI 濾波器中的應用

1. 引言1

  電磁干擾(EMC)正日益成為困擾開關電源發展的嚴重問題,并嚴重影響電網及鄰近設備的正常運行[1]。采用EMI 濾波器是抑制傳導電磁干擾的有效方法。典型EMI 濾波器工作原理如圖1——VAC 通常代表電網或前級電氣設備,LISN 為EMI 測試采用的線路阻抗穩定網絡,EUT 為待測設備,在電力電子領域內其通常為開關電源

  圖1 EMI 濾波器工作示意

  EMI 濾波器一般采用無源結構,以電感、電容為基本組成單元。由于傳統的EMI 濾波器的電感和電容采用分立元件,占據了電力電子設備的較大體積,已不符合開關電源小型化、集成化的發展趨勢。如何壓縮體積,并更加有效阻斷EMI 路徑,成為發展新型EMI 濾波器的重要方向之一。目前,較具有代表性的發展方向是由CPES 較早提出的磁集成方法[2]。此方法在不改變傳統EMI 濾波拓撲的基礎上,在高介電常數陶瓷板上直接覆銅,構成LC 集成單元,并按照傳統EMI 濾波器設計方法,分別利用LC 集成單元構成共模濾波和差模濾波結構,進而組成完整的EMI 濾波器。本課題組經過進一步研究,提出環形LC 集成單元,并組成完整的平面EMI 濾波器(圖2)。

  平面EMI 濾波器的特點是采用平面集成LC 結構(圖3)代替傳統的分立式電感和電容,組成EMI 濾波器的經典結構。

  由于EMI 濾波器串聯于電網與開關電源之間,故其載流能力必須符合開關電源設計要求。受制于現有的陶瓷板覆銅技術,對于矩形銅導線的厚度有較大的限制,當通過較大的電流時,銅導線寬度必然增大,影響平面EMI 濾波器的電磁特性。文獻[3,4]提出采用交錯繞組結構以減小共模繞組的等效并聯電容。但這種方法應用于平面濾波器結構時會影響共模電容值,且對耦合系數要求過高。本文基于現有的平面LC 集成結構電磁模型,分析集膚效應對于EMI 濾波器寄生參數的影響,并采用有限元法計算采用分股并聯PCB 導線結構后,LC 單元寄生電容和寄生電阻的參數變化。

  2.集成LC 單元寄生參數對結構設計的影響

  2.1 集成LC 單元寄生參數設計

  經典的EMI 濾波器設計中,EMI 干擾分為共模干擾與差模干擾,兩種干擾產生的主要原因不同,濾波器基本結構也不相同[5],圖3 為平面EMI 共模干擾濾波器的等效電路圖。

  其中,RLISN 為LISN 等效標準電阻,RLISN=25Ω;LCM、CY 為等效共模電感、共模電容;CEPC、RESR 分別為共模電感的寄生等效電容值與等效串聯電阻值。根據等效電路,圖4 在EMI 測量頻段內,其共模電感的阻抗越大,RLISN 兩端電壓越小,即EMI 干擾的測試值越小,共模電感的阻抗值為:

  式(1)表明,當頻率小于自諧振頻率( 0 1 c EPC ω = L C )時,阻抗呈感性,當頻率大于諧振頻率時,阻抗呈容性。同時,在自諧振頻率前,等效串聯電阻越大,阻抗(ZLCM)越大。圖5 為考慮共模電感寄生參數的共模濾波器插入損耗特性。

  比較曲線l0 與曲線lR1、lR2,可以看出在共模濾波器其它參數不變的條件下,增大等效串聯電阻,可以提高諧振頻率點處的插入損耗,并進一步提高其它頻率點處的插入損耗。比較曲線l0 與曲線lC1、lC2 發現,減小等效并聯電容,可以將共模電感的自諧振頻率點增大,從而改變共模濾波器插入損耗曲線的諧振頻率點,提升其濾波性能。在設計平面集成LC 單元時,需盡量減小共模電感的等效并聯電容(EPC),并增強集膚效應,從而加大

  其高頻交流等效串聯電阻(ESR)。

  2.2 共模模塊PCB 導線交流等效串聯電阻分析

  集成LC 單元采用矩形導線(圖6),為增大等效串

  聯電阻,我們可以利用集膚效應與鄰近效應,提高集

  成共模電感在高頻段的交流電阻。

  圖6 矩形截面導線模型

  其中,R— 導線軸心距;

  W— 銅導線的寬度;

  H— 銅導線的厚度。

  根據傳統的經驗公式,矩形PCB 導線的等效串聯

  電阻交、直流電阻比為[6]:

  由式(2)可以看出,導線的等效串聯電阻的交直流電阻比(Kac)與導體寬度與厚度比相關,相同的導線截面積,設計不同的導線寬度時其高頻段等效串聯電阻會有較大變化。采用經驗公式簡單快捷,但此經驗公式不夠精確,故本文采用有限元法計算等效串聯電阻的交直流電阻比。

  2.3 共模模塊PCB 導線等效并聯電容分析

  EMI 濾波器的載流能力受制于開關電源功率等級,當其流過較大電流時,PCB 導線截面積必然增加,此時導線截面寬度與厚度有兩種設計(圖7)。

  為比較兩種導線設計趨勢的優缺點,建立平面LC單元等效并聯電容模型[7](圖8)。

  圖8 表明,等效并聯電容分為兩部分,分別為上表面區域構成的電容Cgu 和下表區域構成的電容Cgb。由于陶瓷板介電常數遠遠大于周圍空氣的介電常數,故可以認為幾乎所有的通量被限制在高介電常數的陶瓷基板內,導線邊緣產生的電容可以忽略不計,等效并聯電容主要有Cgb 決定。此時將Cgb 看成為一個“電容器”。為減小等效并聯電容(EPC),在導體間距不變的情況下,需增大導線下表面的表面積。故“窄而厚”的設計更加符合集成LC 單元的要求。

  2.4 分股導線結構在集成濾波器中應用

  由于高介電常數的陶瓷板上覆銅厚度有較大的限制,單股結構的LC 單元導線寬度不易減小。為盡量減小PCB 導線寬度以減小共模電感的等效并聯電容,可以借鑒常見的平面電感設計原理,采用分股并聯的LC 單元結構(圖9)。

  新型結構是將陶瓷基板結構的LC 單元與PCB 基板結構的平面電感緊密壓制,從而將單股矩形導線分成多股寬度較小的導線,并使各股銅導線通過PCB 基板上的通孔并聯。這種結構合理的利用了成熟的PCB基板技術,在保證PCB 板厚度足夠小的情況下,有效縮小了單板表面積與整體體積,同時利用PCB 技術解決陶瓷基板焊接不易的問題,圖10 為導線并聯結構LC 單元模型。

  3. 單股導線結構寄生參數計算

  比較不同寬度下兩匝間等效并聯電容(EPC)與等效串聯電阻的交直流比(圖11、12)。計算結果表明,導線截面積一定時,平面LC 單元的等效并聯電容與導線寬度(W)呈線性關系。PCB 導線寬度越小,其等效并聯電容越小。PCB 導線寬度越小,其交直流電阻比(Kac)越大,高頻時共模電感的等效串聯電阻越大。

  4. 分股并聯導線結構寄生參數計算

  采用分股并聯導線結構代替單股矩形導線結構,以三股為例,建立新的有限元計算模型[8],計算LC 單元的寄生參數(圖13~圖15)。

  采用新結構后,導體寬度成倍減小,進而等效并聯電容明顯減小。同時,雖然分裂導線減弱矩形導線的集膚效應,同等寬度下交流電阻有所減小。但對比于同等厚度矩形導線單股導線結構,新結構的導線集膚效應得到加強。

  5.實驗驗證

  為驗證采用分股導線結構后,其等效并聯電容的變化趨勢,采用PCB 基板制作兩種寬度LC 單元系列。LC 單元系列1 以2.5mm 寬度導線構成單股結構LC 單元,并制作其相應的雙股并聯結構和三股并聯結構;LC 單元系列2 以1.5mm 寬度導線構成單股結構LC 單元,同樣制作其相應的雙股并聯結構和三股并聯結構。其中系列1 的導線間距(G)為0.75mm,系列2的導線間距為1.5mm,電容測試采用Agilent 4395A 阻抗分析模塊。

  比較上表中各數據,可以看出對于任意參數的LC單元,采用分股并聯結構后,其等效并聯電容都會有一定的減小,且分裂股數越多,其等效并聯電容越小。

  6. 結論

  以環形“感容”集成結構為基本組成單元(LC 單元),論證了集成電感等效并聯電容(EPC)及等效串聯電阻在高頻段與PCB 導線截面寬度的關系,并在現有技術前提下提出一種改進方法,得到如下結論:

  (1) 降低電感等效并聯電容或是提高其等效串聯等效電阻,都可以提高EMI 濾波器高頻段的濾波性能。

  (2) 在矩形導線截面積一定的條件下,減小導線寬度、增加厚度可以減小等效并聯電容,增強集膚效應、增大交流電阻。

  (3) 采用分股并聯結構后,其等效并聯電容基本不變,并可以獲得較大的交流電阻。

 


【上一個】 開關電源功能規格測試項目 【下一個】 電源插座


 ^ PCB 導線分裂技術在平面EMI 濾波器中的應用